From 1057bd38cf40f3cb1b018cf2edd86effb4bb1e77 Mon Sep 17 00:00:00 2001 From: Camilla Berglund Date: Sun, 9 Aug 2015 15:28:33 +0200 Subject: [PATCH] Add linmath.h --- deps/linmath.h | 567 +++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 567 insertions(+) create mode 100644 deps/linmath.h diff --git a/deps/linmath.h b/deps/linmath.h new file mode 100644 index 00000000..797e8681 --- /dev/null +++ b/deps/linmath.h @@ -0,0 +1,567 @@ +#ifndef LINMATH_H +#define LINMATH_H + +#include + +#define LINMATH_H_DEFINE_VEC(n) \ +typedef float vec##n[n]; \ +static inline void vec##n##_add(vec##n r, vec##n const a, vec##n const b) \ +{ \ + int i; \ + for(i=0; i 1e-4) { + vec3_norm(u, u); + mat4x4 T; + mat4x4_from_vec3_mul_outer(T, u, u); + + mat4x4 S = { + { 0, u[2], -u[1], 0}, + {-u[2], 0, u[0], 0}, + { u[1], -u[0], 0, 0}, + { 0, 0, 0, 0} + }; + mat4x4_scale(S, S, s); + + mat4x4 C; + mat4x4_identity(C); + mat4x4_sub(C, C, T); + + mat4x4_scale(C, C, c); + + mat4x4_add(T, T, C); + mat4x4_add(T, T, S); + + T[3][3] = 1.; + mat4x4_mul(R, M, T); + } else { + mat4x4_dup(R, M); + } +} +static inline void mat4x4_rotate_X(mat4x4 Q, mat4x4 M, float angle) +{ + float s = sinf(angle); + float c = cosf(angle); + mat4x4 R = { + {1.f, 0.f, 0.f, 0.f}, + {0.f, c, s, 0.f}, + {0.f, -s, c, 0.f}, + {0.f, 0.f, 0.f, 1.f} + }; + mat4x4_mul(Q, M, R); +} +static inline void mat4x4_rotate_Y(mat4x4 Q, mat4x4 M, float angle) +{ + float s = sinf(angle); + float c = cosf(angle); + mat4x4 R = { + { c, 0.f, s, 0.f}, + { 0.f, 1.f, 0.f, 0.f}, + { -s, 0.f, c, 0.f}, + { 0.f, 0.f, 0.f, 1.f} + }; + mat4x4_mul(Q, M, R); +} +static inline void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M, float angle) +{ + float s = sinf(angle); + float c = cosf(angle); + mat4x4 R = { + { c, s, 0.f, 0.f}, + { -s, c, 0.f, 0.f}, + { 0.f, 0.f, 1.f, 0.f}, + { 0.f, 0.f, 0.f, 1.f} + }; + mat4x4_mul(Q, M, R); +} +static inline void mat4x4_invert(mat4x4 T, mat4x4 M) +{ + float s[6]; + float c[6]; + s[0] = M[0][0]*M[1][1] - M[1][0]*M[0][1]; + s[1] = M[0][0]*M[1][2] - M[1][0]*M[0][2]; + s[2] = M[0][0]*M[1][3] - M[1][0]*M[0][3]; + s[3] = M[0][1]*M[1][2] - M[1][1]*M[0][2]; + s[4] = M[0][1]*M[1][3] - M[1][1]*M[0][3]; + s[5] = M[0][2]*M[1][3] - M[1][2]*M[0][3]; + + c[0] = M[2][0]*M[3][1] - M[3][0]*M[2][1]; + c[1] = M[2][0]*M[3][2] - M[3][0]*M[2][2]; + c[2] = M[2][0]*M[3][3] - M[3][0]*M[2][3]; + c[3] = M[2][1]*M[3][2] - M[3][1]*M[2][2]; + c[4] = M[2][1]*M[3][3] - M[3][1]*M[2][3]; + c[5] = M[2][2]*M[3][3] - M[3][2]*M[2][3]; + + /* Assumes it is invertible */ + float idet = 1.0f/( s[0]*c[5]-s[1]*c[4]+s[2]*c[3]+s[3]*c[2]-s[4]*c[1]+s[5]*c[0] ); + + T[0][0] = ( M[1][1] * c[5] - M[1][2] * c[4] + M[1][3] * c[3]) * idet; + T[0][1] = (-M[0][1] * c[5] + M[0][2] * c[4] - M[0][3] * c[3]) * idet; + T[0][2] = ( M[3][1] * s[5] - M[3][2] * s[4] + M[3][3] * s[3]) * idet; + T[0][3] = (-M[2][1] * s[5] + M[2][2] * s[4] - M[2][3] * s[3]) * idet; + + T[1][0] = (-M[1][0] * c[5] + M[1][2] * c[2] - M[1][3] * c[1]) * idet; + T[1][1] = ( M[0][0] * c[5] - M[0][2] * c[2] + M[0][3] * c[1]) * idet; + T[1][2] = (-M[3][0] * s[5] + M[3][2] * s[2] - M[3][3] * s[1]) * idet; + T[1][3] = ( M[2][0] * s[5] - M[2][2] * s[2] + M[2][3] * s[1]) * idet; + + T[2][0] = ( M[1][0] * c[4] - M[1][1] * c[2] + M[1][3] * c[0]) * idet; + T[2][1] = (-M[0][0] * c[4] + M[0][1] * c[2] - M[0][3] * c[0]) * idet; + T[2][2] = ( M[3][0] * s[4] - M[3][1] * s[2] + M[3][3] * s[0]) * idet; + T[2][3] = (-M[2][0] * s[4] + M[2][1] * s[2] - M[2][3] * s[0]) * idet; + + T[3][0] = (-M[1][0] * c[3] + M[1][1] * c[1] - M[1][2] * c[0]) * idet; + T[3][1] = ( M[0][0] * c[3] - M[0][1] * c[1] + M[0][2] * c[0]) * idet; + T[3][2] = (-M[3][0] * s[3] + M[3][1] * s[1] - M[3][2] * s[0]) * idet; + T[3][3] = ( M[2][0] * s[3] - M[2][1] * s[1] + M[2][2] * s[0]) * idet; +} +static inline void mat4x4_orthonormalize(mat4x4 R, mat4x4 M) +{ + mat4x4_dup(R, M); + float s = 1.; + vec3 h; + + vec3_norm(R[2], R[2]); + + s = vec3_mul_inner(R[1], R[2]); + vec3_scale(h, R[2], s); + vec3_sub(R[1], R[1], h); + vec3_norm(R[2], R[2]); + + s = vec3_mul_inner(R[1], R[2]); + vec3_scale(h, R[2], s); + vec3_sub(R[1], R[1], h); + vec3_norm(R[1], R[1]); + + s = vec3_mul_inner(R[0], R[1]); + vec3_scale(h, R[1], s); + vec3_sub(R[0], R[0], h); + vec3_norm(R[0], R[0]); +} + +static inline void mat4x4_frustum(mat4x4 M, float l, float r, float b, float t, float n, float f) +{ + M[0][0] = 2.f*n/(r-l); + M[0][1] = M[0][2] = M[0][3] = 0.f; + + M[1][1] = 2.f*n/(t-b); + M[1][0] = M[1][2] = M[1][3] = 0.f; + + M[2][0] = (r+l)/(r-l); + M[2][1] = (t+b)/(t-b); + M[2][2] = -(f+n)/(f-n); + M[2][3] = -1.f; + + M[3][2] = -2.f*(f*n)/(f-n); + M[3][0] = M[3][1] = M[3][3] = 0.f; +} +static inline void mat4x4_ortho(mat4x4 M, float l, float r, float b, float t, float n, float f) +{ + M[0][0] = 2.f/(r-l); + M[0][1] = M[0][2] = M[0][3] = 0.f; + + M[1][1] = 2.f/(t-b); + M[1][0] = M[1][2] = M[1][3] = 0.f; + + M[2][2] = -2.f/(f-n); + M[2][0] = M[2][1] = M[2][3] = 0.f; + + M[3][0] = -(r+l)/(r-l); + M[3][1] = -(t+b)/(t-b); + M[3][2] = -(f+n)/(f-n); + M[3][3] = 1.f; +} +static inline void mat4x4_perspective(mat4x4 m, float y_fov, float aspect, float n, float f) +{ + /* NOTE: Degrees are an unhandy unit to work with. + * linmath.h uses radians for everything! */ + float const a = 1.f / (float) tan(y_fov / 2.f); + + m[0][0] = a / aspect; + m[0][1] = 0.f; + m[0][2] = 0.f; + m[0][3] = 0.f; + + m[1][0] = 0.f; + m[1][1] = a; + m[1][2] = 0.f; + m[1][3] = 0.f; + + m[2][0] = 0.f; + m[2][1] = 0.f; + m[2][2] = -((f + n) / (f - n)); + m[2][3] = -1.f; + + m[3][0] = 0.f; + m[3][1] = 0.f; + m[3][2] = -((2.f * f * n) / (f - n)); + m[3][3] = 0.f; +} +static inline void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up) +{ + /* Adapted from Android's OpenGL Matrix.java. */ + /* See the OpenGL GLUT documentation for gluLookAt for a description */ + /* of the algorithm. We implement it in a straightforward way: */ + + /* TODO: The negation of of can be spared by swapping the order of + * operands in the following cross products in the right way. */ + vec3 f; + vec3_sub(f, center, eye); + vec3_norm(f, f); + + vec3 s; + vec3_mul_cross(s, f, up); + vec3_norm(s, s); + + vec3 t; + vec3_mul_cross(t, s, f); + + m[0][0] = s[0]; + m[0][1] = t[0]; + m[0][2] = -f[0]; + m[0][3] = 0.f; + + m[1][0] = s[1]; + m[1][1] = t[1]; + m[1][2] = -f[1]; + m[1][3] = 0.f; + + m[2][0] = s[2]; + m[2][1] = t[2]; + m[2][2] = -f[2]; + m[2][3] = 0.f; + + m[3][0] = 0.f; + m[3][1] = 0.f; + m[3][2] = 0.f; + m[3][3] = 1.f; + + mat4x4_translate_in_place(m, -eye[0], -eye[1], -eye[2]); +} + +typedef float quat[4]; +static inline void quat_identity(quat q) +{ + q[0] = q[1] = q[2] = 0.f; + q[3] = 1.f; +} +static inline void quat_add(quat r, quat a, quat b) +{ + int i; + for(i=0; i<4; ++i) + r[i] = a[i] + b[i]; +} +static inline void quat_sub(quat r, quat a, quat b) +{ + int i; + for(i=0; i<4; ++i) + r[i] = a[i] - b[i]; +} +static inline void quat_mul(quat r, quat p, quat q) +{ + vec3 w; + vec3_mul_cross(r, p, q); + vec3_scale(w, p, q[3]); + vec3_add(r, r, w); + vec3_scale(w, q, p[3]); + vec3_add(r, r, w); + r[3] = p[3]*q[3] - vec3_mul_inner(p, q); +} +static inline void quat_scale(quat r, quat v, float s) +{ + int i; + for(i=0; i<4; ++i) + r[i] = v[i] * s; +} +static inline float quat_inner_product(quat a, quat b) +{ + float p = 0.f; + int i; + for(i=0; i<4; ++i) + p += b[i]*a[i]; + return p; +} +static inline void quat_conj(quat r, quat q) +{ + int i; + for(i=0; i<3; ++i) + r[i] = -q[i]; + r[3] = q[3]; +} +static inline void quat_rotate(quat r, float angle, vec3 axis) { + vec3 v; + vec3_scale(v, axis, sinf(angle / 2)); + int i; + for(i=0; i<3; ++i) + r[i] = v[i]; + r[3] = cosf(angle / 2); +} +#define quat_norm vec4_norm +static inline void quat_mul_vec3(vec3 r, quat q, vec3 v) +{ +/* + * Method by Fabian 'ryg' Giessen (of Farbrausch) +t = 2 * cross(q.xyz, v) +v' = v + q.w * t + cross(q.xyz, t) + */ + vec3 t = {q[0], q[1], q[2]}; + vec3 u = {q[0], q[1], q[2]}; + + vec3_mul_cross(t, t, v); + vec3_scale(t, t, 2); + + vec3_mul_cross(u, u, t); + vec3_scale(t, t, q[3]); + + vec3_add(r, v, t); + vec3_add(r, r, u); +} +static inline void mat4x4_from_quat(mat4x4 M, quat q) +{ + float a = q[3]; + float b = q[0]; + float c = q[1]; + float d = q[2]; + float a2 = a*a; + float b2 = b*b; + float c2 = c*c; + float d2 = d*d; + + M[0][0] = a2 + b2 - c2 - d2; + M[0][1] = 2.f*(b*c + a*d); + M[0][2] = 2.f*(b*d - a*c); + M[0][3] = 0.f; + + M[1][0] = 2*(b*c - a*d); + M[1][1] = a2 - b2 + c2 - d2; + M[1][2] = 2.f*(c*d + a*b); + M[1][3] = 0.f; + + M[2][0] = 2.f*(b*d + a*c); + M[2][1] = 2.f*(c*d - a*b); + M[2][2] = a2 - b2 - c2 + d2; + M[2][3] = 0.f; + + M[3][0] = M[3][1] = M[3][2] = 0.f; + M[3][3] = 1.f; +} + +static inline void mat4x4o_mul_quat(mat4x4 R, mat4x4 M, quat q) +{ +/* XXX: The way this is written only works for othogonal matrices. */ +/* TODO: Take care of non-orthogonal case. */ + quat_mul_vec3(R[0], q, M[0]); + quat_mul_vec3(R[1], q, M[1]); + quat_mul_vec3(R[2], q, M[2]); + + R[3][0] = R[3][1] = R[3][2] = 0.f; + R[3][3] = 1.f; +} +static inline void quat_from_mat4x4(quat q, mat4x4 M) +{ + float r=0.f; + int i; + + int perm[] = { 0, 1, 2, 0, 1 }; + int *p = perm; + + for(i = 0; i<3; i++) { + float m = M[i][i]; + if( m < r ) + continue; + m = r; + p = &perm[i]; + } + + r = sqrtf(1.f + M[p[0]][p[0]] - M[p[1]][p[1]] - M[p[2]][p[2]] ); + + if(r < 1e-6) { + q[0] = 1.f; + q[1] = q[2] = q[3] = 0.f; + return; + } + + q[0] = r/2.f; + q[1] = (M[p[0]][p[1]] - M[p[1]][p[0]])/(2.f*r); + q[2] = (M[p[2]][p[0]] - M[p[0]][p[2]])/(2.f*r); + q[3] = (M[p[2]][p[1]] - M[p[1]][p[2]])/(2.f*r); +} + +#endif